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 Application Layer 
 

Internet applications include the classic text-based applications that became popular in the 

1970s and 1980s: text email, remote access to computers, file transfers, and newsgroups. They 

include the killer application of the mid-1990s, the World Wide Web, encompassing Web 

surfing, search, and electronic commerce. They include instant messaging and P2P file sharing, 

the two killer applications introduced at the end of the millennium. Since 2000, we have seen an 

explosion of popular voice and video applications, including: voice-over-IP (VoIP) and video 

conferencing over IP such as Skype; user-generated video distribution such as YouTube; and 

movies on demand such as Netflix. During this same period we have also seen the immergence 

of highly engaging multi-player online games, including Second Life and World of Warcraft. 

And most recently, we have seen the emergence of a new generation of social networking 

applications, such as Facebook and Twitter, which have created engaging human networks on top 

of the Internet’s network of routers and communication links. Clearly, there has been no slowing 

down of new and exciting Internet applications. In this chapter we study the conceptual and 

implementation aspects of network applications. We begin by defining key application-layer 

concepts, including network services required by applications, clients and servers, processes, and 

transport-layer interfaces.  

 

2.1 Principles of Network Applications 

Suppose you have an idea for a new network application. Perhaps this application will be a great 

service to humanity, or will please your professor, or will bring you great wealth, or will simply 

be fun to develop. Whatever the motivation may be, let’s now examine how you transform the 

idea into a real-world network application. 

At the core of network application development is writing programs that run on different end 

systems and communicate with each other over the network. For example, in the Web 

application there are two distinct programs that communicate with each other: the browser 

program running in the user’s host (desktop, laptop, tablet, smartphone, and so on); and the Web 

server program running in the Web server host. As another example, in a P2P file-sharing system 

there is a program in each host that participates in the file-sharing community. In this case, the 

programs in the various hosts may be similar or identical. 

Thus, when developing your new application, you need to write software that will run on 

multiple end systems. This software could be written, for example, in C, Java, or Python. 

Importantly, you do not need to write software that runs on network- core devices, such as routers 

or link-layer switches. Even if you wanted to write application software for these network-core 

devices, you wouldn’t be able to do so. As we learned in Chapter 1, and as shown earlier in 

Figure 1.24, network-core devices do not function at the application layer but instead function at 

lower layers— specifically at the network layer and below. This basic design—namely, 



 
confining application software to the end systems—as shown in Figure 2.1, has facilitated the 

rapid development and deployment of a vast array of network applications. 
 

 
 

 

 

Figure 2.1: Communication for a network application takes place between end  

                    systems at the application layer 

 

2.1.1 Network Application Architectures 

Before diving into software coding, you should have a broad architectural plan for your 

application. Keep in mind that an application’s architecture is distinctly different from the 

network architecture (e.g., the five-layer Internet architecture discussed in Chapter 1). From the 

application developer’s perspective, the network architecture is fixed and provides a specific set 

of services to applications. The application architecture, on the other hand, is designed by the 



 
application developer and dictates how the application is structured over the various end systems. 

In choosing the application architecture, an application developer will likely draw on one of the 

two predominant architectural paradigms used in modern network applications: the client-server 

architecture or the peer-to-peer (P2P) architecture. 

 

In client-server architecture, there is an always-on host, called the server, which services 

requests from many other hosts, called clients. A classic example is the Web application for which 

an always-on Web server services requests from browsers running on client hosts. When a Web 

server receives a request for an object from a client host, it responds by sending the requested 

object to the client host. Note that with the client-server architecture, clients do not directly 

communicate with each other; for example, in the Web application, two browsers do not directly 

communicate. Another characteristic of the client-server architecture is that the server has a 

fixed, well-known address, called an IP address (which we’ll discuss soon). Because the server 

has a fixed, well-known address, and because the server is always on, a client can always 

contact the server by sending a packet to the server’s IP address. Some of the better-known 

applications with client-server architecture include the Web, FTP, Telnet, and e-mail. The client-

server architecture is shown in Figure 2.2(a). Often in a client-server application, a single-server host 

is incapable of keeping up   with all the requests from clients. For example, a popular social-

networking site can quickly become overwhelmed if it has only one server handling all of its 

requests. For this reason, a data center, housing a large number of hosts, is often used to create a 

powerful virtual server. The most popular Internet services—such as search engines (e.g., Google 

and Bing), Internet commerce (e.g., Amazon and e-Bay), Web-based email (e.g., Gmail and 

Yahoo Mail), social networking (e.g., Facebook and Twitter) — employ one or more data centers. 

As discussed in Section 1.3.3, Google has 30 to 50 data centers distributed around the world, 

which collectively handle search, YouTube, Gmail, and other services. A data center can have 

hundreds of thousands of servers, which must be powered and maintained. Additionally, the 

service providers must pay recurring interconnection and bandwidth costs for sending data from 

their data centers.  

 

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in data centers. 

Instead the application exploits direct communication between pairs of intermittently connected 

hosts, called peers. The peers are not owned by the service provider, but are instead desktops and 

laptops controlled by users, with most of the peers residing in homes, universities, and offices. 

Because the peers communicate without passing through a dedicated server, the architecture is 

called peer-to-peer. Many of today’s most popular and traffic-intensive applications are based 

on P2P architectures. These applications include file sharing (e.g., BitTorrent), peer-assisted 

download acceleration (e.g., Xunlei), Internet Telephony (e.g., Skype), and IPTV (e.g., Kankan and 

PPstream). The P2P architecture is illustrated in Figure 2.2(b). 

 

 



 
 

 

 

Figure 2.2: (a) Client-server architecture b. Peer-to-peer architecture 

 

We mention that some applications have hybrid architectures, combining both client-server and 

P2P elements. For example, for many instant messaging applications, servers are used to track the 

IP addresses of users, but user-to-user messages are sent directly between user hosts (without 

passing through intermediate servers). 

 

One of the most compelling features of P2P architectures is their self-scalability. For example, 

in a P2P file-sharing application, although each peer generates workload by requesting files, 

each peer also adds service capacity to the system by distributing files to other peers. P2P 

architectures are also cost effective, since they normally don’t require significant server 

infrastructure and server bandwidth (in contrast with clients-server designs with datacentres). 

However, future P2P applications face three major challenges: 

1. ISP Friendly. Most residential ISPs (including DSL and cable ISPs) have been 

dimensioned for “asymmetrical” bandwidth usage, that is, for much more downstream than 

upstream traffic. But P2P video streaming and file distribution applications shift upstream 

traffic from servers to residential ISPs, thereby putting significant stress on the ISPs. 

Future P2P applications need to be designed so that they are friendly to ISPs. 



 
2. Security. Because of their highly distributed and open nature, P2P applications can be a 

challenge to secure. 

3. Incentives. The success of future P2P applications also depends on convincing users to 

volunteer bandwidth, storage, and computation resources to the applications, which is the 

challenge of incentive design. 

2.1.2 Processes Communicating 

Before building your network application, you also need a basic understanding of how the 

programs, running in multiple end systems, communicate with each other. In the jargon of 

operating systems, it is not actually programs but processes that communicate. A process can be 

thought of as a program that is running within an end system. When processes are running on the 

same end system, they can communicate with each other with interprocess communication, using 

rules that are governed by the end system’s operating system. But in this book we are not 

particularly interested in how processes in the same host communicate, but instead in how 

processes running on different hosts (with potentially different operating systems) communicate. 

 

Processes on two different end systems communicate with each other by exchanging messages 

across the computer network. A sending process creates and sends messages into the network; a 

receiving process receives these messages and possibly responds by sending messages back. 

Figure 2.1 illustrates that processes communicating with each other reside in the application layer of 

the five-layer protocol stack. 

 

Client and Server Processes 

A network application consists of pairs of processes that send messages to each other over a 

network. For example, in the Web application a client browser process exchanges messages with 

a Web server process. In a P2P file-sharing system, a file is transferred from a process in one 

peer to a process in another peer. For each pair of communicating processes, we typically label 

one of the two processes as the client and the other process as the server. With the Web, a 

browser is a client process and a Web server is a server process. With P2P file sharing, the peer 

that is downloading the file is labelled as the client, and the peer that is uploading the file is 

labelled as the server. 

You may have observed that in some applications, such as in P2P file sharing, a process can 

be both a client and a server. Indeed, a process in a P2P file-sharing system can both upload and 

download files. Nevertheless, in the context of any given communication session between a pair 

of processes, we can still label one process as the client and the other process as the server. We 

define the client and server processes as follows: 

In the context of a communication session between a pair of processes, the process that initiates 

the communication (that is, initially contacts the other process at the beginning of the session) is 

labelled as the client. The process that waits to be contacted to begin the session is the server. 



 
In the Web, a browser process initializes contact with a Web server process; hence the 

browser process is the client and the Web server process is the server. In P2P file sharing, when 

Peer A asks Peer B to send a specific file, Peer A is the client and Peer B is the server in the 

context of this specific communication session.  

 

The Interface between the Process and the Computer Network 

As noted above, most applications consist of pairs of communicating processes, with the two 

processes in each pair sending messages to each other. Any message sent from one process to 

another must go through the underlying network. A process sends messages into, and receives 

messages from, the network through a software interface called a socket. Let’s consider an 

analogy to help us understand processes and sockets. A process is analogous to a house and its 

socket is analogous to its door. When a process wants to send a message to another process on 

another host, it shoves the message out its door (socket). This sending process assumes that there 

is a transportation infrastructure on the other side of its door that will transport the message to 

the door of the destination process. Once the message arrives at the destination host, the message 

passes through the receiving process’s door (socket), and the receiving process then acts on the 

message. 

 
 

                    Figure 2.3: Application processes, sockets, and underlying transport protocol 

 

Figure 2.3 illustrates socket communication between two processes that communicate over 

the Internet. (Figure 2.3 assumes that the underlying transport protocol used by the processes is 

the Internet’s TCP protocol.) As shown in this figure, a socket is the interface between the 

application layer and the transport layer within a host. It is also referred to as the Application 

Programming Interface (API) between the application and the network, since the socket is the 

programming interface with which network applications are built. The application developer has 



 
control of everything on the application-layer side of the socket but has little control of the 

transport-layer side of the socket. The only control that the application developer has on the 

transport-layer side is (1) the choice of transport protocol and (2) perhaps the ability to fix a few 

transport-layer parameters such as maximum buffer and maximum segment sizes (to be covered 

in Chapter 3). Once the application developer chooses a transport protocol (if a choice is 

available), the application is built using the transport-layer services provided by that protocol. 

 

Addressing Processes 

In order to send postal mail to a particular destination, the destination needs to have an address. 

Similarly, in order for a process running on one host to send packets to a process running on 

another host, the receiving process needs to have an address. To identify the receiving process, 

two pieces of information need to be specified: 

1. The address of the host and  

2. An identifier that specifies the receiving process in the destination host. 

 

In the Internet, the host is identified by its IP address. We’ll discuss IP addresses in great 

detail in Network layer. For now, all we need to know is that an IP address is a 32-bit quantity 

that we can think of as uniquely identifying the host. In addition to knowing the address of the 

host to which a message is destined, the sending process must also identify the receiving 

process (more specifically, the receiving socket) running in the host. This information is needed 

because in general a host could be running many network applications. A destination port 

number serves this purpose. Popular applications have been assigned specific port numbers. 

For example, a Web server is identified by port number 80. A mail server process (using the 

SMTP protocol) is identified by port number 25. A list of well-known port numbers for all 

Internet standard protocols can be found at http://www.iana.org.  

2.1.3 Transport Services Available to Applications 

Recall that a socket is the interface between the application process and the transport-layer 

protocol. The application at the sending side pushes messages through the socket. At the other 

side of the socket, the transport-layer protocol has the responsibility of getting the messages to 

the socket of the receiving process. 

 

Many networks, including the Internet, provide more than one transport-layer protocol. When 

you develop an application, you must choose one of the available transport-layer protocols. 

Study the services provided by the available transport-layer protocols, and then pick the protocol 

with the services that best match to your application’s needs. The situation is similar to choosing 

either train or airplane transport for travel between two cities. We can broadly classify the 

possible services along four dimensions: reliable data transfer, throughput, timing, and security. 

 

 

http://www.iana.org/


 
Reliable Data Transfer 

As discussed earlier, packets can get lost within a computer network. For example, a packet 

can overflow a buffer in a router, or can be discarded by a host or router after having some of its 

bits corrupted. For many applications—such as electronic mail, file transfer, remote host 

access, Web document transfers, and financial applications—data loss can have devastating 

consequences. Thus, something has to be done to guarantee that the data sent by one end of the 

application is delivered correctly and completely to the other end of the application. If a protocol 

provides such a guaranteed data delivery service, it is said to provide reliable data transfer. 

One important service that a transport-layer protocol can potentially provide to an application 

is process-to-process reliable data transfer. When a transport protocol provides this service, the 

sending process can just pass its data into the socket and know with complete confidence that 

the data will arrive without errors at the receiving process. 

 

When a transport-layer protocol doesn’t provide reliable data transfer, it may be acceptable 

for loss-tolerant applications, most notably multimedia applications such as conversational 

audio/video that can tolerate some amount of data loss.  

 

Throughput 

In Chapter 1 we introduced the concept of available throughput, which, in the context of a 

communication session between two processes along a network path. Because other sessions 

will be sharing the bandwidth, so that the available throughput can fluctuate with time. These 

observations lead to another natural service, namely, guaranteed available throughput at some 

specified rate. With such a service, the application could request a guaranteed throughput of r 

bits/sec, and the transport protocol would then ensure that the available throughput is always at 

least r bits/sec. Such a guaranteed throughput service would appeal to many applications. For 

example, if an Internet telephony application encodes voice at 32 kbps, it needs to send data 

into the network and have data delivered to the receiving application at this rate. If the 

transport protocol cannot provide this throughput, the application would need to encode at a 

lower rate (and receive enough throughput to sustain this lower coding rate) or may have to 

give up, since receiving, say, half of the needed throughput is of little or no use to this Internet 

telephony application. Applications that have throughput requirements are said to be 

bandwidth-sensitive applications. Many current multimedia applications are bandwidth 

sensitive, although some multimedia applications may use adaptive coding techniques to 

encode digitized voice or video at a rate that matches the currently available throughput. 

 

While bandwidth-sensitive applications have specific throughput requirements, elastic 

applications can make use of as much, or as little, throughput as happens to be available. 

Electronic mail, file transfer, and Web transfers are all elastic applications.  

 



 
Timing 

A transport-layer protocol can also provide timing guarantees. As with throughput guarantees, 

timing guarantees can come in many shapes and forms. An example guarantee might be that 

every bit that the sender pumps into the socket arrives at the receiver’s socket no more than 100 

msec later. Such a service would be appealing to interactive real-time applications, such as 

Internet telephony, virtual environments, teleconferencing, and multiplayer games, all of which 

require tight timing constraints on data delivery in order to be effective. Long delays in Internet 

telephony, for example, tend to result in unnatural pauses in the conversation; in a multiplayer 

game or virtual interactive environment, a long delay between taking an action and seeing the 

response from the environment (for example, from another player at the end of an end-to-end 

connection) makes the application feel less realistic. For non-real-time applications, lower 

delay is always preferable to higher delay, but no tight constraint is placed on the end-to-end 

delays. 

 

Security 

Finally, a transport protocol can provide an application with one or more security services. For 

example, in the sending host, a transport protocol can encrypt all data transmitted by the sending 

process, and in the receiving host, the transport-layer protocol can decrypt the data before 

delivering the data to the receiving process. Such a service would provide confidentiality 

between the two processes, even if the data is somehow observed between sending and receiving 

processes. A transport protocol can also provide other security services in addition to 

confidentiality, including data integrity and end-point authentication. 

 

Application Data Loss Throughput Time-Sensitive 

File transfer/download No loss Elastic No 

E-mail No loss Elastic No 

Web documents No loss Elastic (few kbps) No 

Internet telephony/ 
Video conferencing 

Loss-tolerant Audio: few kbps–1Mbps Video: 10 
kbps–5 Mbps 

Yes: 100s of msec 

Streaming stored 
audio/video 

Loss-tolerant Same as above Yes: few seconds 

Interactive games Loss-tolerant Few kbps–10 kbps Yes: 100s of msec 

Instant messaging No loss Elastic Yes and no 

 

                 Figure 2.4: Requirements of selected network applications 



 

2.1.4 Transport Services Provided by the Internet 

Let’s now get more specific and examine the type of transport services provided by the Internet. 

The Internet (and, more generally, TCP/IP networks) makes two transport protocols available to 

applications, UDP and TCP. Each of these protocols offers a different set of services to the 

invoking applications. Figure 2.4 shows the service requirements for some selected applications. 

 

TCP Services 

The TCP service model includes a connection-oriented service and a reliable data transfer 

service. When an application invokes TCP as its transport protocol, the application receives both 

of these services from TCP. 

 

• Connection-oriented service. TCP has the client and server exchange transport layer control 

information with each other before the application-level messages begin to flow. This so-

called handshaking procedure alerts the client and server, allowing them to prepare for an 

onslaught of packets. After the handshaking phase, a TCP connection is said to exist between 

the sockets of the two processes. The connection is a full-duplex connection in that the two 

processes can send messages to each other over the connection at the same time.  

• Reliable data transfer service. The communicating processes can rely on TCP to deliver all 

data sent without error and in the proper order. When one side of the application passes a 

stream of bytes into a socket, it can count on TCP to deliver the same stream of bytes to the 

receiving socket, with no missing or duplicate bytes. 

 

TCP also includes a congestion-control mechanism, a service for the general welfare of the 

Internet rather than for the direct benefit of the communicating processes. The TCP congestion-

control mechanism throttles a sending process (client or server) when the network is congested 

between sender and receiver.  

 

UDP Services 

UDP is a lightweight transport protocol, providing minimal services. It is connectionless, so 

there is no handshaking before the two processes start to communicate. UDP provides an 

unreliable data transfer service—that is, when a process sends a message into a UDP socket, UDP 

provides no guarantee that the message will ever reach the receiving process. Furthermore, 

messages that do arrive at the receiving process may arrive out of order. UDP does not include a 

congestion-control mechanism, so the sending side of UDP can pump data into the layer below 

(the network layer) at any rate it pleases. (Note, however, that the actual end-to-end throughput 

may be less than this rate due to the limited transmission capacity of intervening links or due to 

congestion). 

 



 
 

Services Not Provided by Internet Transport Protocols 

We have organized transport protocol services along four dimensions: reliable data transfer, 

throughput, timing, and security. We have already noted that TCP provides reliable end-to-end 

data transfer. And we also know that TCP can be easily enhanced at the application layer with 

SSL to provide security services. But in our brief description of TCP and UDP, conspicuously 

missing was any mention of throughput or timing guarantees—services not provided by today’s 

Internet transport protocols. Does this mean that time sensitive applications such as Internet 

telephony cannot run in today’s Internet? The answer is clearly no. It means these applications 

often work fairly well because they have been designed to cope, to the greatest extent possible, 

with this lack of guarantee. Nevertheless, clever design has its limitations when delay is 

excessive, or the end-to-end throughput is limited. In summary, today’s Internet can often 

provide satisfactory service to time-sensitive applications, but it cannot provide any timing or 

throughput guarantees. 

 

Application Application-Layer Protocol Underlying Transport Protocol 

Electronic mail SMTP [RFC 5321] TCP 

Remote terminal access Telnet [RFC 854] TCP 

Web HTTP [RFC 2616] TCP 

File transfer FTP [RFC 959] TCP 

Streaming multimedia HTTP (e.g., YouTube) TCP 

Internet telephony SIP [RFC 3261], RTP [RFC 3550], or 
proprietary (e.g., Skype) 

UDP or TCP 

 

                    Figure 2.5:  Popular Internet applications, their application-layer protocols, and  

                                         their underlying transport protocols 
 

Figure 2.5 indicates the transport protocols used by some popular Internet applications. 

We see that e-mail, remote terminal access, the Web, and file transfer all use TCP. These 

applications have chosen TCP primarily because TCP provides reliable data transfer, 

guaranteeing that all data will eventually get to its destination. Because Internet telephony 

applications (such as Skype) can often tolerate some loss but require a minimal rate to be 

effective, developers of Internet telephony applications usually prefer to run their applications 

over UDP, thereby circumventing TCP’s congestion control mechanism and packet 

overheads. But because many firewalls are configured to block (most types of) UDP traffic, 

Internet telephony applications often are designed to use TCP as a backup if UDP 

communication fails. 

 



 

 

2.1.5 Application-Layer Protocols 

We have just learned that network processes communicate with each other by sending messages 

into sockets. But how are these messages structured? What are the meanings of the various fields 

in the messages? When do the processes send the messages? These questions bring us into the 

realm of application-layer protocols. An application-layer protocol defines how an 

application’s processes, running on different end systems, pass messages to each other. In 

particular, an application-layer protocol defines: 

• The types of messages exchanged, for example, request messages and response messages. 

• The syntax of the various message types, such as the fields in the message and how the 

fields are delineated. 

• The semantics of the fields, that is, the meaning of the information in the fields. 

• Rules for determining when and how a process sends messages and responds to messages. 

 

Some application-layer protocols are specified in RFCs and are therefore in the public domain. For 

example, the Web’s application-layer protocol, HTTP (the Hyper Text Transfer Protocol [RFC 

2616]), is available as an RFC. If a browser developer follows the rules of the HTTP RFC, the 

browser will be able to retrieve Web pages from any Web server that has also followed the 

rules of the HTTP RFC. Many other application-layer protocols are proprietary and intentionally 

not available in the public domain. For example, Skype uses proprietary application-layer protocols. 

 

It is important to distinguish between network applications and application-layer protocols. An 

application-layer protocol is only one piece of a network application (albeit, a very important 

piece of the application from our point of view!). Let’s look at a couple of examples. The Web is a 

client-server application that allows users to obtain documents from Web servers on demand. 

The Web application consists of many components, including a standard for document formats 

(that is, HTML), Web browsers (for example, Firefox and Microsoft Internet Explorer), Web 

servers (for example, Apache and Microsoft servers), and an application-layer protocol. The 

Web’s application-layer protocol, HTTP, defines the format and sequence of messages exchanged 

between browser and Web server. Thus, HTTP is only one piece (albeit, an important piece) of the 

Web application. As another example, an Internet e-mail application also has many components, 

including mail servers that house user mailboxes; mail clients (such as Microsoft Outlook) that 

allow users to read and create messages; a standard for defining the structure of an e-mail message; 

and application-layer protocols that define how messages are passed between servers, how 

messages are passed between servers and mail clients, and how the contents of message headers 

are to be interpreted. The principal application-layer protocol for electronic mail is SMTP 

(Simple Mail Transfer Protocol) [RFC 5321]. Thus, e-mail’s principal application-layer protocol, 

SMTP, is only one piece (albeit, an important piece) of the e-mail application. 



 
 

 

2.2 The Web and HTTP 

Until the early 1990s the Internet was used primarily by researchers, academics, and university 

students to log in to remote hosts, to transfer files from local hosts to remote hosts and vice versa, to 

receive and send news, and to receive and send electronic mail. Then, in the early 1990s, a major 

new application arrived on the scene—the World Wide Web [Berners-Lee 1994]. The Web was 

the first Internet application that caught the general public’s eye. It dramatically changed, and 

continues to change, how people interact inside and outside their work environments. It elevated 

the Internet from just one of many data networks to essentially the one and only data network. 

 

Perhaps, this is unlike traditional broadcast radio and television, which force users to tune in 

when the content provider makes the content available. In addition, the Web has many other 

wonderful features that people love and cherish. It is enormously easy for any individual to make 

information available over the Web—everyone can become a publisher at extremely low cost. 

Hyperlinks and search engines help us to navigate through an ocean of Web sites. Graphics 

stimulate our senses. Forms, JavaScript, Java applets, and many other devices enable us to 

interact with pages and sites. And the Web serves as a platform for many applications emerging 

after 2003, including YouTube, Gmail, and Facebook. 

 

2.2.1 Overview of HTTP 

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol, is defined in 

[RFC 1945] and [RFC 2616]. HTTP is implemented in two programs: a client program and a 

server program. These programs are executing on different end systems, talk to each other by 

exchanging HTTP messages. HTTP defines the structure of these messages and how the client 

and server exchange the messages. Before explaining HTTP in detail, we should review some 

Web terminology. 

 

A Web page (also called a document) consists of objects. An object is simply a file—such as 

an HTML file, a JPEG image, a Java applet, or a video clip—that is addressable by a single 

URL. Most Web pages consists of a base HTML file and several referenced objects. For 

example, if a Web page contains HTML text and five JPEG images, then the Web page has six 

objects: the base HTML file plus the five images. The base HTML file references the other 

objects in the page with the objects’ URLs. Each URL has two components: the hostname of the 

server that houses the object and the object’s path name. For example, the URL 

 

http://www.someSchool.edu/someDepartment/picture.gif 

 

has www.someSchool.edu for a hostname and /someDepartment/ picture.gif for a path name. 

http://www.someschool.edu/someDepartment/picture.gif
http://www.someschool.edu/


 

Because Web browsers (such as Internet Explorer, Google Chrome and Firefox) implement the 

client side of HTTP, in the context of the Web, we will use the words browser and client 

interchangeably. Web servers, which implement the server side of HTTP, house Web objects, 

each addressable by a URL. Popular Web servers include Apache and Microsoft Internet 

Information Server. 

 

HTTP defines how Web clients request Web pages from Web servers and how servers 

transfer Web pages to clients. The general idea is illustrated in Figure 2.6 in which a user 

requests a Web page (for example, clicks on a hyperlink); the browser sends HTTP request 

messages for the objects in the page to the server. The server receives the requests and responds 

with HTTP response messages that contain the objects. HTTP uses TCP as its underlying 

transport protocol (rather than running on top of UDP). The HTTP client first initiates a TCP 

connection with the server. Once the connection is established, the browser and the server 

processes access TCP through their socket interfaces. As described in Section 2.1, on the client 

side the socket interface is the door between the client process and the TCP connection; on the 

server side it is the door between the server process and the TCP connection. The client sends 

HTTP request messages into its socket interface and receives HTTP response messages from its 

socket interface. Similarly, the HTTP server receives request messages from its socket interface 

and sends response messages into its socket interface.  

 
                                    Figure 2.6: HTTP request-response behaviour 

 

Once the client sends a message into its socket interface, the message is out of the client’s 

hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a reliable data 

transfer service to HTTP. This implies that each HTTP request message sent by a client process 

eventually arrives intact at the server; similarly, each HTTP response message sent by the server 



 
process eventually arrives intact at the client. Here we see one of the great advantages of a 

layered architecture—HTTP need not worry about lost data or the details of how TCP recovers 

from loss or reordering of data within the network. That is the job of TCP and the protocols in 

the lower layers of the protocol stack.  

 

It is important to note that the server sends requested files to clients without storing any state 

information about the client. If a particular client asks for the same object twice in a period of a 

few seconds, the server does not respond by saying that it just served the object to the client; 

instead, the server resends the object, as it has completely forgotten what it did earlier. Because 

an HTTP server maintains no information about the clients, HTTP is said to be a stateless 

protocol. Note that a Web server is always on, with a fixed IP address, and it services requests 

from potentially millions of different browsers. 

 

2.2.2 Non-Persistent and Persistent Connections 

In many Internet applications, the client and server communicate for an extended period of time, 

with the client making a series of requests and the server responding to each of the requests. 

Depending on the application and on how the application is being used, the series of requests may 

be made back-to-back, periodically at regular intervals, or intermittently. When this client-server 

interaction is taking place over TCP, the application developer needs to make an important 

decision––should each request/response pair be sent over a separate TCP connection, or should all 

of the requests and their corresponding responses be sent over the same TCP connection? In the 

former approach, the application is said to use non-persistent connections; and in the latter 

approach, persistent connections. To gain a deep understanding of this design issue, let’s examine 

the advantages and disadvantages of persistent connections in the context of a specific application, 

namely, HTTP, which can use both non-persistent connections and persistent connections. 

Although HTTP uses persistent connections in its default mode, HTTP clients and servers can be 

configured to use non-persistent connections instead. 

 

HTTP with Non-Persistent Connections 

Let’s walk through the steps of transferring a Web page from server to client for the case of 

non-persistent connections. Let’s suppose the page consists of a base HTML file and 10 JPEG 

images, and that all 11 of these objects reside on the same server. Further suppose the URL for 

the base HTML file is 

 

http://www.someSchool.edu/someDepartment/home.index 

 

Here is what happens: 

 

1. The HTTP client process initiates a TCP connection to the server www.someSchool.edu on 

port number 80, which is the default port number for HTTP.  

http://www.someschool.edu/someDepartment/home.index
http://www.someschool.edu/


 

2. The HTTP client sends an HTTP request message to the server via its socket. The request 

message includes the path name /someDepartment/home.index. 

3. The HTTP server process receives the request message via its socket, retrieves the object 

/someDepartment/home.index from its storage (RAM or disk), encapsulates the object in 

an HTTP response message, and sends the response message to the client via its socket. 

4. The HTTP server process tells TCP to close the TCP connection. (But TCP doesn’t 

actually terminate the connection until it knows for confirmation of message from client.) 

5. The HTTP client receives the response message. The TCP connection terminates. The 

message indicates that the encapsulated object is an HTML file. The client extracts the file 

from the response message, examines the HTML file, and finds references to the 10 JPEG 

objects. 

6. The first four steps are then repeated for each of the referenced JPEG objects. 

 

As the browser receives the Web page, it displays the page to the user. Two different browsers 

may interpret (that is, display to the user) a Web page in somewhat different ways. The steps above 

illustrate the use of non-persistent connections, where each TCP connection is closed after the 

server sends the object—the connection does not persist for other objects. Note that each TCP 

connection transports exactly one request message and one response message. Thus, in this 

example, when a user requests the Web page, 11 TCP connections are generated. 

 
                     

                                Figure 2.7: Back-of-the-envelope calculation for the time needed to 

                                                          request and receive an HTML file 

 



 
Before continuing, let’s do a back-of-the-envelope calculation to estimate the amount of time 

that elapses from when a client requests the base HTML file until the entire file is received by 

the client. To this end, we define the round-trip time (RTT), which is the time it takes for a 

small packet to travel from client to server and then back to the client. The RTT includes packet-

propagation delays, packet queuing delays in intermediate routers and switches, and packet-

processing delays. (Types of delays were discussed earlier).  

 

Now consider what happens when a user clicks on a hyperlink. As shown in Figure 2.7, this 

causes the browser to initiate a TCP connection between the browser and the Web server; this 

involves a “three-way handshake”—the client sends a small TCP segment to the server, the 

server acknowledges and responds with a small TCP segment, and, finally, the client 

acknowledges back to the server. The first two parts of the three-way handshake take one RTT. 

After completing the first two parts of the hand-shake, the client sends the HTTP request 

message combined with the third part of the three-way handshake (the acknowledgment) into the 

TCP connection. Once the request message arrives at the server, the server sends the HTML file 

into the TCP connection. This HTTP request/response eats up another RTT. Thus, roughly, the 

total response time is two RTTs plus the transmission time at the server of the HTML file. 

 

HTTP with Persistent Connections 

Non-persistent connections have some shortcomings. First, a brand new connection must be 

established and maintained for each requested object. For each of these connections, TCP 

buffers must be allocated and TCP variables must be kept in both the client and server. This can 

place a significant burden on the Web server, which may be serving requests from hundreds of 

different clients simultaneously. Second, as we just described, each object suffers a delivery 

delay of two RTTs— one RTT to establish the TCP connection and one RTT to request and 

receive an object. 

 

With persistent connections, the server leaves the TCP connection open after sending a 

response. Subsequent requests and responses between the same client and server can be sent over 

the same connection. In particular, an entire Web page (in the example above, the base HTML 

file and the 10 images) can be sent over a single persistent TCP connection. Moreover, multiple 

Web pages residing on the same server can be sent from the server to the same client over a 

single persistent TCP connection. These requests for objects can be made back-to-back, without 

waiting for replies to pending requests (pipelining). The default mode of HTTP uses persistent 

connections with pipelining.  

 

2.2.3 HTTP Message Formats 

The HTTP specifications [RFC 1945; RFC 2616] include the definitions of the HTTP message 

formats. There are two types of HTTP messages, request messages and response messages, both 

of which are discussed below. 



 

 

HTTP Request Message 

Below we provide a typical HTTP request message: 

 

GET /somedir/page.html HTTP/1.1  

Host: www.someschool.edu 

Connection: close 

 

User-agent: Mozilla/5.0 Accept-language: fr 

 

We can learn a lot by taking a close look at this simple request message. First of all, we see 

that the message is written in ordinary ASCII text, so that your ordinary computer-literate human 

being can read it. Second, we see that the message consists of five lines, each followed by a 

carriage return and a line feed. The last line is followed by an additional carriage return and line 

feed. Although this particular request message has five lines, a request message can have many 

more lines or as few as one line. The first line of an HTTP request message is called the request 

line; the subsequent lines are called the header lines. The request line has three fields: the 

method field, the URL field, and the HTTP version field. The method field can take on several 

different values, including GET, POST, HEAD, PUT, and DELETE. The great majority of HTTP 

request messages use the GET method. The GET method is used when the browser requests an 

object, with the requested object identified in the URL field. In this example, the browser is 

requesting the object  /somedir/page.html. The version is self-explanatory; in this example, the 

browser implements version HTTP/1.1. 

 

                                    Figure 2.8: General format of an HTTP request message 

 

http://www.someschool.edu/


 
Now let’s look at the header lines in the example. The header line Host: 

www.someschool.edu specifies the host on which the object resides. You might think that this 

header line is unnecessary, as there is already a TCP connection in place to the host. But, it Web 

proxy caches. By including the Connection: close header line, the browser is telling the server 

that it doesn’t want to bother with persistent connections; it wants the server to close the 

connection after sending the requested object. The User-agent: header line specifies the user 

agent, that is, the browser type that is making the request to the server. Here the user agent is 

Mozilla/5.0, a Firefox browser. This header line is useful because the server can actually send 

different versions of the same object to different types of user agents. (Each of the versions is 

addressed by the same URL.) Finally, the Accept-language: header indicates that the user 

prefers to receive a French version of the object, if such an object exists on the server; otherwise, 

the server should send its default version. The Accept-language: header is just one of many 

content negotiation headers available in HTTP. 

 

Having looked at an example, let’s now look at the general format of a request message, as 

shown in Figure 2.8. We see that the general format closely follows our earlier example. You 

may have noticed, however, that after the header lines (and the additional carriage return and line 

feed) there is an “entity body.” The entity body is empty with the GET method, but is used with 

the POST method. An HTTP client often uses the POST method when the user fills out a form—

for example, when a user provides search words to a search engine. With a POST message, the 

user is still requesting a Web page from the server that depends on what the user entered into the 

form fields. The HEAD method is similar to the GET method. When a server receives a request 

with the HEAD method, it responds with an HTTP message but it leaves out the requested object. 

Application developers often use the HEAD method for debugging. The PUT method is often 

used in conjunction with Web publishing tools. It allows a user to upload an object to a specific 

path (directory) on a specific Web server. The DELETE method allows a user, or an application, 

to delete an object on a Web server. 

 

HTTP Response Message 

Below we provide a typical HTTP response message. This response message could be the 

response to the example request message just discussed. 

 

HTTP/1.1 200 OK 

Connection: close 

Date: Tue, 09 Aug 2011 15:44:04 GMT 

Server: Apache/2.2.3 (CentOS) 

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT 

Content-Length: 6821 Content-Type:  text/html 

(data data data data data ...) 

 

http://www.someschool.edu/


 

The response message has three sections: an initial status line, six header lines, and then the 

entity body. The entity body is the meat of the message—it contains the requested object itself 

(represented by data data data data data ...). The status line has three fields: the protocol version 

field, a status code, and a corresponding status message. In this example, the status line indicates 

that the server is using HTTP/1.1 and that everything is OK (that is, the server has found, and is 

sending, the requested object). 

 

Now let’s look at the header lines. The server uses the Connection: close header line to tell the 

client that it is going to close the TCP connection after sending the message. The Date: header 

line indicates the time and date when the HTTP response was created and sent by the server. 

Note that this is not the time when the object was created or last modified; it is the time when 

the server retrieves the object from its file system, inserts the object into the response message, 

and sends the response message. The Server: header line indicates that the message was generated 

by an Apache Web server; it is analogous to the User-agent: header line in the HTTP request 

message. The Last-Modified: header line indicates the time and date when the object was created 

or last modified. The Last-Modified: header, which we will soon cover in more detail, is critical 

for object caching, both in the local client and in network cache servers (also known as proxy 

servers). The Content-Length: header line indicates the number of bytes in the object being sent. 

The Content-Type: header line indicates that the object in the entity body is HTML text. (The 

object type is officially indicated by the Content-Type: header and not by the file extension.) 

Having looked at an example, let’s now examine the general format of a response message, 

which is shown in Figure 2.9. This general format of the response message matches the previous 

example of a response message. Let’s say a few additional words about status codes and their 

phrases. The status code and associated phrase indicate the result of the request. Some common 

status codes and associated phrases include: 

 

• 200 OK: Request succeeded and the information is returned in the response. 

• 301 Moved Permanently: Requested object has been permanently moved; the new URL is 

specified in Location: header of the response message. The client software will automatically 

retrieve the new URL.  

• 400 Bad Request: This is a generic error code indicating that the request could not be 

understood by the server.  

• 404 Not Found: The requested document does not exist on this server.  

• 505 HTTP Version Not Supported: The requested HTTP protocol version is not supported by 

the server. 

 

 



 

 
                                            Figure 2.9: General format of an HTTP response message 

 

2.2.4 User-Server Interaction: Cookies 

We mentioned above that an HTTP server is stateless. This simplifies server design and has 

permitted engineers to develop high-performance Web servers that can handle thousands of 

simultaneous TCP connections. However, it is often desirable for a Web site to identify users, 

either because the server wishes to restrict user access or because it wants to serve content as a 

function of the user identity. For these purposes, HTTP uses cookies. Cookies, defined in [RFC 

6265], allow sites to keep track of users. Most major commercial Web sites use cookies today. 

 

As shown in Figure 2.10, cookie technology has four components: (1) a cookie header line in 

the HTTP response message; (2) a cookie header line in the HTTP request message; (3) a cookie 

file kept on the user’s end system and managed by the user’s browser; and (4) a back-end 

database at the Web site. Using Figure 2.10, let’s walk through an example of how cookies work. 

Suppose Susan, who always accesses the Web using Internet Explorer from her home PC, 

contacts Amazon.com for the first time. Let us suppose that in the past she has already visited the 

eBay site. When the request comes into the Amazon Web server, the server creates a unique 

identification number and creates an entry in its back-end database that is indexed by the 

identification number. The Amazon Web server then responds to Susan’s browser, including in 

the HTTP response a Set-cookie: header, which contains the identification number. For example, 

the header line might be: Set-cookie: 1678 

 

When Susan’s browser receives the HTTP response message, it sees the Set- cookie: header. The 

browser then appends a line to the special cookie file that it manages. This line includes the 

hostname of the server and the identification number in the Set-cookie: header. Note that the 

cookie file already has an entry for eBay, since Susan has visited that site in the past. As Susan 
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continues to browse the Amazon site, each time she requests a Web page, her browser consults 

her cookie file, extracts her identification number for this site, and puts a cookie header line that 

includes the identification number in the HTTP request. Specifically, each of her HTTP requests 

to the Amazon server includes the header line:  Cookie: 1678 

In this manner, the Amazon server is able to track Susan’s activity at the Amazon site. Although 

the Amazon Web site does not necessarily know Susan’s name, it knows exactly which pages 

user 1678 visited, in which order, and at what times! Amazon uses cookies to provide its 

shopping cart service—Amazon can maintain a list of all of Susan’s intended purchases, so that 

she can pay for them collectively at the end of the session. 

 
                                       Figure 2.10: keeping user state with Cookies 

 

If Susan returns to Amazon’s site, say, one week later, her browser will continue to put the 

header line Cookie: 1678 in the request messages. Amazon also recommends products to Susan 

based on Web pages she has visited at Amazon in the past. If Susan also registers herself with 

Amazon—providing full name, e-mail address, postal address, and credit card information—



 

Amazon can then include this information in its database, thereby associating Susan’s name with 

her identification number (and all of the pages she has visited at the site in the past!). This is how 

Amazon and other e-commerce sites provide “one-click shopping”—when Susan chooses to 

purchase an item during a subsequent visit, she doesn’t need to re-enter her name, credit card 

number, or address. 

 

From this discussion we see that cookies can be used to identify a user. The first time a user 

visits a site, the user can provide user identification (possibly his or her name). During the 

subsequent sessions, the browser passes a cookie header to the server, thereby identifying the 

user to the server. Cookies can thus be used to create a user session layer on top of stateless 

HTTP. For example, when a user logs in to a Web-based e-mail application (such as Hotmail), 

the browser sends cookie information to the server, permitting the server to identify the user 

throughout the user’s session with the application. 

 

Although cookies often simplify the Internet shopping experience for the user, they are 

controversial because they can also be considered as an invasion of privacy. As we just saw, using 

a combination of cookies and user-supplied account information, a Web site can learn a lot about 

a user and potentially sell this information to a third party.  

 

2.2.5 Web Caching 

A Web cache—also called a proxy server—is a network entity that satisfies HTTP requests on 

the behalf of an origin Web server. The Web cache has its own disk storage and keeps copies of 

recently requested objects in this storage. As shown in Figure 2.11, a user’s browser can be 

configured so that all of the user’s HTTP requests are first directed to the Web cache. Once a browser 

is configured, each browser request for an object is first directed to the Web cache. As an 

example, suppose a browser is requesting the object http://www.someschool.edu/campus.gif. Here 

is what happens: 

1. The browser establishes a TCP connection to the Web cache and sends an HTTP request for 

the object to the Web cache.  

2. The Web cache checks to see if it has a copy of the object stored locally. If it does, the Web 

cache returns the object within an HTTP response message to the client browser. 

3. If the Web cache does not have the object, the Web cache opens a TCP connection to the 

origin server, that is, to www.someschool.edu. The Web cache then sends an HTTP request 

for the object into the cache-to-server TCP connection. After receiving this request, the 

origin server sends the object within an HTTP response to the Web cache. 

4. When the Web cache receives the object, it stores a copy in its local storage and sends a 

copy, within an HTTP response message, to the client browser (over the existing TCP 

connection between the client browser and the Web cache). 

 

http://www.someschool.edu/campus.gif
http://www.someschool.edu/
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Note that a cache is both a server and a client at the same time. When it receives requests from 

and sends responses to a browser, it is a server. When it sends requests to and receives responses 

from an origin server, it is a client. Typically a Web cache is purchased and installed by an ISP. 

For example, a university might install a cache on its campus network and configure all of the 

campus browsers to point to the cache. Or a major residential ISP (such as AOL) might install 

one or more caches in its network and preconfigure its shipped browsers to point to the installed 

caches. 

 

                       Figure 2.11: Bottleneck between an institutional network and the Internet 

Web caching has seen deployment in the Internet for two reasons. First, a Web cache can 

substantially reduce the response time for a client request, particularly if the bottleneck bandwidth 

between the client and the origin server is much less than the bottleneck bandwidth between the 

client and the cache. If there is a high-speed connection between the client and the cache, as there 

often is, and if the cache has the requested object, then the cache will be able to deliver the object 

rapidly to the client. Second, as we will soon illustrate with an example, Web caches can 

substantially reduce traffic on an institution’s access link to the Internet. By reducing traffic, the 

institution (for example, a company or a university) does not have to upgrade bandwidth as quickly, 

thereby reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the 

Internet as a whole, thereby improving performance for all applications. 

 

To gain a deeper understanding of the benefits of caches, let’s consider an example in the 

context of Figure 2.12. This figure shows two networks—the institutional network and the rest of 

the public Internet. The institutional network is a high-speed LAN. A router in the institutional 



 

network and a router in the Internet are connected by a 15 Mbps link. The origin servers are 

attached to the Internet but are located all over the globe. Suppose that the average object size is 

1 Mbits and that the average request rate from the institution’s browsers to the origin servers is 

15 requests per second. Suppose that the HTTP request messages are negligibly small and thus 

create no traffic in the networks or in the access link (from institutional router to Internet router). 

Also suppose that the amount of time it takes from when the router on the Internet side of the 

access link in Figure 2.12 forwards an HTTP request (within an IP datagram) until it receives the 

response (typically within many IP datagrams) is two seconds on average. Informally, we refer to 

this last delay as the “Internet delay.” 

 

                            Figure 2.12: A high-level view of the Internet e-mail system 

 

2.3 Electronic Mail in the Internet 

Electronic mail has been around since the beginning of the Internet. It was the most popular 

application when the Internet was in its infancy and has become more and more elaborate and 

powerful over the years. It remains one of the Internet’s most important and utilized applications. 

As with ordinary postal mail, e-mail is an asynchronous communication medium—people send 

and read messages when it is convenient for them, without having to coordinate with other 

people’s schedules. In contrast with postal mail, electronic mail is fast, easy to distribute, and 

inexpensive. Modern e-mail has many powerful features, including messages with attachments, 
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hyperlinks, HTML-formatted text, and embedded photos. 

In this section, we examine the application-layer protocols that are at the heart of Internet e-

mail. Figure 2.12 presents a high-level view of the Internet mail system. We see from this 

diagram that it has three major components: user agents, mail servers, and the Simple Mail 

Transfer Protocol (SMTP). We now describe each of these components in the context of a 

sender, Alice, sending an e-mail message to a recipient, Bob. User agents allow users to read, 

reply to, forward, save, and compose messages. Microsoft Outlook and Apple Mail are examples 

of user agents for e-mail. When Alice is finished composing her message, her user agent sends 

the message to her mail server, where the message is placed in the mail server’s outgoing 

message queue. When Bob wants to read a message, his user agent retrieves the message from 

his mailbox in his mail server. 

 

A mail server forms the core of the e-mail infrastructure. Each recipient, such as Bob, has a 

mailbox located in one of the mail servers. Bob’s mailbox manages and maintains the messages 

that have been sent to him. A typical message starts its journey in  the  sender’s  user  agent,  

travels  to  the  sender’s  mail  server,  and travels to the recipient’s mail server, where it is 

deposited in the recipient’s mailbox. 

 

When Bob wants to access the messages in his mailbox, the mail server containing his mailbox 

authenticates Bob (with usernames and passwords). Alice’s mail server must also deal with 

failures in Bob’s mail server. If Alice’s server cannot delivers mail to Bob’s server, Alice’s 

server holds the message in a message queue and attempts to transfer the message later. 

Reattempts are often done for every 30 minutes or so; if there is no success after several days, 

the server removes the message and notifies the sender (Alice) with an e-mail message. 

 

SMTP is the principal application-layer protocol for Internet electronic mail. It uses the 

reliable data transfer service of TCP to transfer mail from the sender’s mail server to the 

recipient’s mail server. As with most application-layer protocols, SMTP has two sides: a client 

side, which executes on the sender’s mail server, and a server side, which executes on the 

recipient’s mail server. Both the client and server sides of SMTP run on every mail server. When 

a mail server sends mail to other mail servers, it acts as an SMTP client. When a mail server 

receives mail from other mail servers, it acts as an SMTP server. 

 

SMTP 

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As mentioned above, 

SMTP transfers messages from senders’ mail servers to the recipients’ mail servers. SMTP is 

much older than HTTP (The original SMTP RFC dates back to 1982, and SMTP was around 

long before that.) Although SMTP has numerous wonderful qualities, as evidenced by its 

ubiquity in the Internet, it is nevertheless a legacy technology that possesses certain archaic 



 

characteristics. For example, it restricts the body (not just the headers) of all mail messages to 

simple 7-bit ASCII. This restriction made sense in the early 1980s when transmission capacity 

was scarce and no one was e-mailing large attachments or large image, audio, or video files. But 

today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—it requires binary 

multimedia data to be encoded to ASCII before being sent over SMTP; and it requires the 

corresponding ASCII message to be decoded back to binary after SMTP transport. Recall from 

Section that HTTP does not require multimedia data to be ASCII encoded before transfer. To 

illustrate the basic operation of SMTP, let’s walk through a common scenario. Suppose Alice 

wants to send Bob a simple ASCII message. 

 

                                           Figure 2.13: Alice sends a message to Bob 

 

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for example, 

bob@someschool.edu), composes a message, and instructs the user agent to send the 

message. 

2. Alice’s user agent sends the message to her mail server, where it is placed in a message 

queue. 

3. The client side of SMTP, running on Alice’s mail server, sees the message in 

the message queue. It opens a TCP connection to an SMTP server, running on 

Bob’s mail server. 

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message 

into the TCP connection. 

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s 

mail server then places the message in Bob’s mailbox. 

6. Bob invokes his user agent to read the message at his convenience. 

 

The scenario is summarized in Figure 2.13. It is important to observe that SMTP does not 

normally use intermediate mail servers for sending mail, even when the two mail servers are 

located at opposite ends of the world. If Alice’s server is in Hong Kong and Bob’s server is in St. 
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Louis, the TCP connection is a direct connection between the Hong Kong and St. Louis servers. 

In particular, if Bob’s mail server is down, the message remains in Alice’s mail server and waits 

for a new attempt—the message does not get placed in some intermediate mail server. Let’s now 

take a closer look at how SMTP transfers a message from a sending mail server to a receiving 

mail server. First, the client SMTP (running on the sending mail server host) has TCP establish a 

connection to port 25 at the server SMTP (running on the receiving mail server host). If the 

server is down, the client tries again later. Once this connection is established, the server and 

client perform some application-layer handshaking—just as humans often introduce themselves 

before transferring information from one to another, SMTP clients and servers introduce 

themselves before transferring information.  

 

Let’s next take a look at an example transcript of messages exchanged between an SMTP 

client (C) and an SMTP server (S). The hostname of the client is crepes.fr and the hostname of 

the server is hamburger.edu. The ASCII text lines prefaced with C: are exactly the lines the 

client sends into its TCP socket, and the ASCII text lines prefaced with S: are exactly the 

lines the server sends into its TCP socket. The following transcript begins as soon as the TCP 

connection is established. 

 

S: 220 hamburger.edu C: HELO crepes.fr 

S: 250 Hello crepes.fr, pleased to meet you  

C: MAIL FROM: <alice@crepes.fr> 

S: 250 alice@crepes.fr ... Sender ok C:  

RCPT TO: <bob@hamburger.edu> 

S: 250 bob@hamburger.edu ... Recipient ok  

C: DATA 

S: 354 Enter mail, end with “.” on a line by itself  

C: Do you like ketchup? 

C: How about 

pickles?  

C: . 

S: 250 Message accepted for delivery C: QUIT 

S: 221 hamburger.edu closing connection 

 

In the example above, the client sends a message (“Do you like ketchup? How about pickles?”) 

from mail server crepes.fr to mail server hamburger.edu. As part of the dialogue, the client 

issued five commands: HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, 

and QUIT. These commands are self-explanatory. The client also sends a line consisting of a 

single period, which indicates the end of the message to the server. (In ASCII jargon, each 

mailto:alice@crepes.fr
mailto:alice@crepes.fr
mailto:bob@hamburger.edu
mailto:bob@hamburger.edu


 

message ends with CRLF.CRLF, where CR and LF stand for carriage return and line feed, 

respectively.) The server issues replies to each command, with each reply having a reply code and 

some (optional) English-language explanation. We mention here that SMTP uses persistent 

connections: If the sending mail server has several messages to send to the same receiving mail 

server, it can send all of the messages over the same TCP connection.  Then issue the SMTP 

commands HELO, MAIL FROM, RCPT TO, DATA, CRLF.CRLF, and QUIT at the appropriate 

times.  

 

Comparison with HTTP 

Let’s now briefly compare SMTP with HTTP. Both protocols are used to transfer files from one 

host to another: HTTP transfers files (also called objects) from a Web server to a Web client 

(typically a browser); SMTP transfers files (that is, e-mail messages) from one mail server to 

another mail server. When transferring the files, both persistent HTTP and SMTP use persistent 

connections. Thus, the two protocols have common characteristics. However, there are important 

differences. First, HTTP is mainly a pull protocol—someone loads information on a Web server 

and users use HTTP to pull the information from the server at their convenience. In particular, 

the TCP connection is initiated by the machine that wants to receive the file. On the other hand, 

SMTP is primarily a push protocol—the sending mail server pushes the file to the receiving 

mail server. In particular, the TCP connection is initiated by the machine that wants to send the 

file. 

A second difference, which we alluded to earlier, is that SMTP requires each message, 

including the body of each message, to be in 7-bit ASCII format. If the message contains 

characters that are not 7-bit ASCII (for example, French characters with accents) or contains 

binary data (such as an image file), then the message has to be encoded into 7-bit ASCII. 

HTTP data does not impose this restriction. 

 

A third important difference concerns how a document consisting of text and images (along 

with possibly other media types) is handled. As we learned in Section 2.2, HTTP encapsulates 

each object in its own HTTP response message. Internet mail places all of the message’s objects 

into one message. 

Mail Message Formats 

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds of peripheral 

header information at the top of the letter, such as Bob’s address, her own return address, and the 

date. Similarly, when an e-mail message is sent from one per- son to another, a header containing 

peripheral information precedes the body of the message itself. This peripheral information is 

contained in a series of header lines, which are defined in RFC 5322. The header lines and the 

body of the message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the 

exact format for mail header lines as well as their semantic interpretations. As with HTTP, each 
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header line contains readable text, consisting of a keyword followed by a colon followed by a 

value. Some of the keywords are required and others are optional. Every header must have a 

From: header line and a To: header line; a header may include a Subject: header line as well as other 

optional header lines. It is important to note that these header lines are different from the SMTP 

commands we studied earlier (even though they contain some common words such as “from” and 

“to”). The commands in that section were part of the SMTP handshaking protocol; the header 

lines examined in this section are part of the mail message itself. A typical message header looks 

like this: 

 

From: alice@crepes.fr To: 

bob@hamburger.edu 

Subject: Searching for the meaning of life. 

 

After the message header, a blank line follows; then the message body (in ASCII) follows. You 

should use Telnet to send a message to a mail server that contains some header lines, including the 

Subject: header line. To do this, issue telnet serverName 25. 

 

Mail Access Protocols 

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the message is 

placed in Bob’s mailbox. Throughout this discussion we have tacitly assumed that Bob reads his 

mail by logging onto the server host and then executing a mail reader that runs on that host. Until 

the early 1990s this was the standard way of doing things. But today, mail access uses client-

server architecture—the typical user reads e-mail with a client that executes on the user’s end 

system, for example, on an office PC, a laptop, or a smartphone. By executing a mail client on a 

local PC, users enjoy a rich set of features, including the ability to view multimedia messages 

and attachments. Given that Bob (the recipient) executes his user agent on his local PC, it is 

natural to consider placing a mail server on his local PC as well.  

 

 
 

         Figure 2.14: E-mail protocols and their communicating entities 
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With this approach, Alice’s mail server would dialogue directly with Bob’s PC. And this could 

be done with SMTP—indeed; SMTP has been designed for pushing e-mail from one host to 

another. However, typically the sender’s user agent does not dialogue directly with the 

recipient’s mail server. Instead, as shown in Figure 2.14, Alice’s user agent uses SMTP to push 

the e-mail message into her mail server, then Alice’s mail server uses SMTP (as an SMTP client) 

to relay the e-mail message to Bob’s mail server. The SMTP RFC defines how the SMTP 

commands can be used to relay a message across multiple SMTP servers. Note that Bob’s user 

agent can’t use SMTP to obtain the messages because obtaining the messages is a pull 

operation, whereas SMTP is a push protocol. The puzzle is completed by introducing a special 

mail access proto- col that transfers messages from Bob’s mail server to his local PC. There are 

currently a number of popular mail access protocols, including Post Office Protocol—Version 3 

(POP3), Internet Mail Access Protocol (IMAP), and HTTP. Figure 2.14 provides a summary 

of the protocols that are used for Internet mail: SMTP is used to transfer mail from the sender’s 

mail server to the recipient’s mail server; SMTP is also used to transfer mail from the sender’s 

user agent to the sender’s mail server. A mail access protocol, such as POP3, is used to transfer 

mail from the recipient’s mail server to the recipient’s user agent. 

 

POP3 

POP3 is an extremely simple mail access protocol. It is defined in [RFC 1939], which is short and 

quite readable. Because the protocol is so simple, its functionality is rather limited. POP3 begins 

when the user agent (the client) opens a TCP connection to the mail server (the server) on port 

110. With the TCP connection established, POP3 progresses through three phases: authorization, 

transaction, and update. During the first phase, authorization, the user agent sends a username and 

a password (in the clear) to authenticate the user. During the second phase, transaction, the user 

agent retrieves messages; also during this phase, the user agent can mark messages for deletion, 

remove deletion marks, and obtain mail statistics. The third phase, update, occurs after the 

client has issued the quit command, ending the POP3 session; at this time, the mail server 

deletes the messages that were marked for deletion. 

 

In a POP3 transaction, the user agent issues commands, and the server responds to each 

command with a reply. There are two possible responses: +OK (sometimes followed by server-

to-client data), used by the server to indicate that the previous command was fine; and -ERR, 

used by the server to indicate that something was wrong with the previous command. The 

authorization phase has two principal commands: user <username> and pass <password>. To 

illustrate these two commands, we suggest that you Telnet directly into a POP3 server, using port 

110, and issue these commands. Suppose that mailServer  is the name of your mail server. You 

will see something like: 

 

telnet mailServer 110 

+OK POP3 server 

ready user bob 



 

+OK 

pass hungry 

+OK user successfully logged on 

 

If you misspell a command, the POP3 server will reply with an -ERR message. Now let’s take a 

look at the transaction phase. A user agent using POP3 can often be configured (by the user) to 

“download and delete” or to “download and keep.” The sequence of commands issued by a 

POP3 user agent depends on which of these two modes the user agent is operating in. In the 

download-and-delete mode, the user agent will issue the list, retr, and dele commands. As an 

example, suppose the user has two messages in his or her mailbox. In the dialogue below, C: 

(standing for client) is the user agent and S: (standing for server) is the mail server. The 

transaction will look something like: 

 

C: list S: 1 498 

S: 2 912 S: . 

C: retr 1 

S: (blah blah  ...  

S: ................. 

S:…………….blah) 

S: . 

C: dele 1 

C: retr 2 

S: (blah blah ... 

S: ................. 

S:…………..blah) 

S: . 

C: dele 2 C: quit 

S: +OK POP3 server signing off 

 

The user agent first asks the mail server to list the size of each of the stored messages. The user 

agent then retrieves and deletes each message from the server. Note that after the authorization 

phase, the user agent employed only four commands: list, retr, dele, and quit. The syntax for 

these commands is defined in RFC 1939. After processing the quit command, the POP3 server 

enters the update phase and removes messages 1 and 2 from the mailbox. 

 

IMAP 

With POP3 access, once Bob has downloaded his messages to the local machine, he can create 

mail folders and move the downloaded messages into the folders. Bob can then delete 

messages, move messages across folders, and search for messages (by sender name or 

subject). But this paradigm—namely, folders and messages in the local machine—poses a 

problem for the nomadic user, who would prefer to maintain a folder hierarchy on a remote 



 

server that can be accessed from any computer. This is not possible with POP3—the POP3 

protocol does not provide any means for a user to create remote folders and assign messages 

to folders. To solve this and other problems, the IMAP protocol, defined in [RFC 3501], was 

invented. Like POP3, IMAP is a mail access protocol. It has many more features than POP3, but 

it is also significantly more complex. (And thus the client and server side implementations are 

significantly more complex.) 

 

An IMAP server will associate each message with a folder; when a message first arrives at the 

server, it is associated with the recipient’s INBOX folder. The recipient can then move the 

message into a new, user-created folder, read the message, delete the message, and so on. The 

IMAP protocol provides commands to allow users to create folders and move messages from one 

folder to another. IMAP also provides commands that allow users to search remote folders for 

messages matching specific criteria. Note that, unlike POP3, an IMAP server maintains user 

state information across IMAP sessions—for example, the names of the folders and which 

messages are associated with which folders. 

 

Another important feature of IMAP is that it has commands that permit a user agent to obtain 

components of messages. For example, a user agent can obtain just the message header of a 

message or just one part of a multipart MIME message. This feature is useful when there is a 

low-bandwidth connection (for example, a slow-speed modem link) between the user agent 

and its mail server. With a low- bandwidth connection, the user may not want to download all 

of the messages in its mailbox, particularly avoiding long messages that might contain, for 

example, an audio or video clip. 

 

Web-Based E-Mail 

More and more users today are sending and accessing their e-mail through their Web browsers. 

Hotmail introduced Web-based access in the mid-1990s. Now Web-based e-mail is also provided 

by Google, Yahoo!, as well as just about every major university and corporation. With this 

service, the user agent is an ordinary Web browser, and the user communicates with its remote 

mailbox via HTTP. When a recipient, such as Bob, wants to access a message in his mailbox, the 

e-mail message is sent from Bob’s mail server to Bob’s browser using the HTTP protocol rather 

than the POP3 or IMAP protocol. When a sender, such as Alice, wants to send an e-mail 

message, the e-mail message is sent from her browser to her mail server over HTTP rather than 

over SMTP. Alice’s mail server, however, still sends messages to, and receives messages from, 

other mail servers using SMTP. 

 

2.5 DNS—The Internet’s Directory Service 

We human beings can be identified in many ways. For example, we can be identified by the 

names that appear on our birth certificates. We can be identified by our social security numbers. 



 

We can be identified by our driver’s license numbers. Although each of these identifiers can be 

used to identify people, within a given context one identifier may be more appropriate than 

another. For example, the computers at the IRS (the infamous tax-collecting agency in the United 

States) prefer to use fixed-length social security numbers rather than birth certificate names. On 

the other hand, ordinary people prefer the more mnemonic birth certificate names rather than 

social security numbers. (Indeed, can you imagine saying, “Hi. My name is 132-67-9875. Please 

meet my husband, 178-87-1146.”) 

 

Just as humans can be identified in many ways, so too can Internet hosts. One identifier for a host 

is its hostname. Hostnames—such as cnn.com, www.yahoo.com, gaia.cs.umass.edu, and 

cis.poly.edu—are mnemonic and are therefore appreciated by humans. However, hostnames provide 

little, if any, information about the location within the Internet of the host. (A hostname such as 

www.eurecom.fr, which ends with the country code .fr, tells us that the host is probably in France, 

but doesn’t say much more.) Further hostnames can consist of variable-length alphanumeric 

characters; they would be difficult to process by routers. For these reasons, hosts are also identified 

by so-called IP addresses. 

 

We discuss IP addresses later, but it is useful to say a few brief words about them now. An IP 

address consists of four bytes and has a rigid hierarchical structure. An IP address looks like 

121.7.106.83, where each period separates one of the bytes expressed in decimal notation from 0 

to 255. An IP address is hierarchical because as we scan the address from left to right, we obtain 

more and more specific information about where the host is located in the Internet (that is, within 

which network, in the network of networks). Similarly, when we scan a postal address from 

bottom to top, we obtain more and more specific information about where the addressee is 

located. 

2.5.1 Services Provided by DNS 

We have just seen that there are two ways to identify a host—by a hostname and by an IP 

address. People prefer the more mnemonic hostname identifier, while routers prefer fixed-length, 

hierarchically structured IP addresses. In order to reconcile these preferences, we need a 

directory service that translates hostnames to IP addresses. This is the main task of the Internet’s 

domain name system (DNS). The DNS is (1) a distributed database implemented in a hierarchy 

of DNS servers, and (2) an application-layer protocol that allows hosts to query the distributed 

database. The DNS servers are often UNIX machines running the Berkeley Internet Name 

Domain (BIND) software [BIND 2012]. The DNS protocol runs over UDP and uses port 53. 

 

DNS is commonly employed by other application-layer protocols—including HTTP, SMTP, 

and FTP—to translate user-supplied hostnames to IP addresses. As an example, consider what 

happens when a browser (that is, an HTTP client), running on some user’s host, requests the 

URL www.someschool.edu/ index.html. In order for the user’s host to be able to send an HTTP 

http://www.eurecom.fr/
http://www.someschool.edu/index.html
http://www.someschool.edu/index.html


 

request message to the Web server www.someschool.edu, the user’s host must first obtain the IP 

address of www.someschool.edu. This is done as follows. 

 

1. The same user machine runs the client side of the DNS application. 

2. The browser extracts the hostname, www.someschool.edu, from the URL and passes the 

hostname to the client side of the DNS application. 

3. The DNS client sends a query containing the hostname to a DNS server. 

4. The DNS client eventually receives a reply, which includes the IP address for the 

hostname. 

5. Once the browser receives the IP address from DNS, it can initiate a TCP connection to the 

HTTP server process located at port 80 at that IP address. 

 

We see from this example that DNS adds an additional delay—sometimes substantial—to the 

Internet applications that use it. Fortunately, as we discuss below, the desired IP address is often 

cached in a “nearby” DNS server, which helps to reduce DNS network traffic as well as the 

average DNS delay. DNS provides a few other important services in addition to translating host- 

names to IP addresses: 

 

• Host aliasing. A host with a complicated hostname can have one or more alias names. For 

example, a hostname such as relay1.west-coast.enter-prise.com could have, say, two aliases 

such as enterprise.com and www.enterprise.com. In this case, the hostname relay1.west- 

coast.enterprise.com is said to be a canonical hostname. Alias host-names, when present, 

are typically more mnemonic than canonical hostnames. DNS can be invoked by an 

application to obtain the canonical hostname for a supplied alias hostname as well as the IP 

address of the host. 

• Mail server aliasing. For obvious reasons, it is highly desirable that e-mail addresses be 

mnemonic. For example, if Bob has an account with Hotmail, Bob’s e-mail address might be 

as simple as bob@hotmail.com. However, the host-name of the Hotmail mail server is more 

complicated and much less mnemonic than simply hotmail.com (for example, the canonical 

hostname might be something like relay1.west-coast.hotmail.com). DNS can be invoked by 

a mail application to obtain the canonical hostname for a supplied alias hostname as well as 

the IP address of the host.  

• Load distribution. DNS is also used to perform load distribution among replicated 

servers, such as replicated Web servers. Busy sites, such as cnn.com, are replicated over 

multiple servers, with each server running on a different end sys- tem and each having a 

different IP address. For replicated Web servers, a set of IP addresses is thus associated with 

one canonical hostname. The DNS database contains this set of IP addresses. Also, content 

distribution companies such as Akamai have used DNS in more sophisticated ways to 

provide Web content distribution. 

 

http://www.someschool.edu/
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The DNS is specified in RFC 1034 and RFC 1035, and updated in several additional 

RFCs. It is a complex system, and we only touch upon key aspects of its operation here.  

 

2.5.2 Overview of How DNS Works 

We now present a high-level overview of how DNS works. Our discussion will focus on the 

hostname-to-IP-address translation service. Suppose that some application (such as a Web 

browser or a mail reader) running in a user’s host needs to translate a hostname to an IP address. 

The application will invoke the client side of DNS, specifying the hostname that needs to be 

translated. DNS in the user’s host then takes over, sending a query message into the network. 

All DNS query and reply messages are sent within UDP datagrams to port 53. After a delay, 

ranging from milliseconds to seconds, DNS in the user’s host receives a DNS reply message 

that provides the desired mapping. This mapping is then passed to the invoking application. 

Thus, from the perspective of the invoking application in the user’s host, DNS is a black box 

providing a simple, straightforward translation service. But in fact, the black box that 

implements the service is complex, consisting of a large number of DNS servers distributed 

around the globe, as well as an application-layer protocol that specifies how the DNS servers and 

querying hosts communicate. 

 

A simple design for DNS would have one DNS server that contains all the mappings. In this 

centralized design, clients simply direct all queries to the single DNS server, and the DNS server 

responds directly to the querying clients. Although the simplicity of this design is attractive, it is 

inappropriate for today’s Internet, with its vast (and growing) number of hosts. The problems 

with a centralized design include: 

• A single point of failure. If the DNS server crashes, so does the entire Internet. 

• Traffic volume. A single DNS server would have to handle all DNS queries (for all the 

HTTP requests and e-mail messages generated from hundreds of millions of hosts). 

• Distant centralized database. A single DNS server cannot be “close to” all the querying 

clients. If we put the single DNS server in New York City, then all queries from Australia 

must travel to the other side of the globe, perhaps over slow and congested links. This can 

lead to significant delays. 

• Maintenance. The single DNS server would have to keep records for all Internet hosts. Not 

only would this centralized database be huge, but it would have to be updated frequently to 

account for every new host. 

In summary, a centralized database in a single DNS server simply doesn’t scale. Consequently, 

the DNS is distributed by design. In fact, the DNS is a wonderful example of how a distributed 

database can be implemented in the Internet. 

 

 

 



 

A Distributed, Hierarchical Database 

In order to deal with the issue of scale, the DNS uses a large number of servers, organized in a 

hierarchical fashion and distributed around the world. No single DNS server has all of the 

mappings for all of the hosts in the Internet. Instead, the mappings are distributed across the 

DNS servers. To a first approximation, there are three classes of DNS servers—root DNS 

servers, top-level domain (TLD) DNS servers, and authoritative DNS servers—organized in a 

hierarchy as shown in Figure 2.15. To understand how these three classes of servers interact, 

suppose a DNS client wants to determine the IP address for the hostname www.amazon.com. To 

a first approximation, the following events will take place. The client first contacts one of the 

root servers, which returns IP addresses for TLD servers for the top-level domain com. The 

client then contacts one of these TLD servers, which returns the IP address of an authoritative 

server for amazon.com. Finally, the client contacts one of the authoritative servers for 

amazon.com, which returns the IP address for the hostname www.amazon.com. 

 

Figure 2.15: Portion of the hierarchy of DNS servers 

We’ll soon examine this DNS lookup process in more detail. But let’s first take a closer look at 

these three classes of DNS servers: 

 

• Root DNS servers. In the Internet there are 13 root DNS servers (labelled A through M), 

most of which are located in North America. Although we have referred to each of the 13 

root DNS servers as if it were a single server, each “server” is actually a network of 

replicated servers, for both security and reliability purposes. Altogether, there are 247 root 

servers as of fall 2011. 

• Top-level domain (TLD) servers. These servers are responsible for top-level domains 

such as com, org, net, edu, and gov, and all of the country top-level domains such as uk, fr, ca, 

and jp. The company VeriSign Global Registry Services maintains the TLD servers for 

the com top-level domain, and the company Educause maintains the TLD servers for the 

http://www.amazon.com/
http://www.amazon.com/


 

edu top-level domain.  

• Authoritative DNS servers. Every organization with publicly accessible hosts (such as 

Web servers and mail servers) on the Internet must provide publicly accessible DNS records 

that map the names of those hosts to IP addresses. An organization’s authoritative DNS 

server houses these DNS records. An organization can choose to implement its own 

authoritative DNS server to hold these records; alternatively, the organization can pay to 

have these records stored in an authoritative DNS server of some service provider. Most 

universities and large companies implement and maintain their own primary and secondary 

(backup) authoritative DNS server. 

 

The root, TLD, and authoritative DNS servers all belong to the hierarchy of DNS servers, as 

shown in Figure 2.15. There is another important type of DNS server called the local DNS 

server. A local DNS server does not strictly belong to the hierarchy of servers but is nevertheless 

central to the DNS architecture. Each ISP—such as a university, an academic department, an 

employee’s company, or a residential ISP—has a local DNS server (also called a default name 

server). When a host connects to an ISP, the ISP provides the host with the IP addresses of one or 

more of its local DNS servers. You can easily determine the IP address of your local DNS server 

by accessing network status windows in Windows or UNIX. A host’s local DNS server is 

typically “close to” the host. For an institutional ISP, the local DNS server may be on the same 

LAN as the host; for a residential ISP, it is typically separated from the host by no more than a 

few routers. When a host makes a DNS query, the query is sent to the local DNS server, which 

acts a proxy, forwarding the query into the DNS server hierarchy, as we’ll discuss in more detail 

below. 

Let’s take a look at a simple example. Suppose the host cis.poly.edu desires the IP address 

of gaia.cs.umass.edu. Also suppose that Polytechnic’s local DNS server is called dns.poly.edu 

and that an authoritative DNS server for gaia.cs.umass.edu is called dns.umass.edu. As shown in 

Figure 2.16, the host cis.poly.edu first sends a DNS query message to its local DNS server, 

dns.poly.edu. The query message contains the hostname to be translated, namely, 

gaia.cs.umass.edu. The local DNS server forwards the query message to a root DNS server. The 

root DNS server takes note of the edu suffix and returns to the local DNS server a list of IP 

addresses for TLD servers responsible for edu. The local DNS server then resends the query 

message to one of these TLD servers. The TLD server takes note of the umass.edu suffix and 

responds with the IP address of the authoritative DNS server for the University of Massachusetts, 

namely, dns.umass.edu. Finally, the local DNS server resends the query message directly to 

dns.umass.edu, which responds with the IP address of gaia.cs.umass.edu. Note that in this 

example, in order to obtain the mapping for one hostname, eight DNS messages were sent: four 

query messages and four reply messages! We’ll soon see how DNS caching reduces this query 

traffic. 

 

 



 

Our previous example assumed that the TLD server knows the authoritative DNS server for 

the hostname. In general, it may not be always true. Instead, the TLD server may know only of an 

intermediate DNS server, which in turn knows the authoritative DNS server for the hostname. 

For example, suppose again that the University of Massachusetts has a DNS server for the 

university, called dns.umass.edu. Also suppose that each of the departments at the University of 

Massachusetts has its own DNS server, and that each departmental DNS server is authoritative 

for all hosts in the department.  

 
                                      

                                     Figure 2.16: Interaction of various DNS servers 

 

In this case, when the intermediate DNS server, dns.umass.edu, receives a query for a host with a 

hostname ending with cs.umass.edu, it returns to dns.poly.edu the IP address of 

dns.cs.umass.edu, which is authoritative for all hostnames ending with cs.umass.edu. The local 

DNS server dns.poly.edu then sends the query to the authoritative DNS server, which returns the 

desired mapping to the local DNS server, which in turn returns the mapping to the requesting 

host. In this case, a total of 10 DNS messages are sent. The example shown in Figure 2.17 makes 

use of both recursive queries and iterative queries. The query sent from cis.poly.edu to 

dns.poly.edu is a recursive query, since the query asks dns.poly.edu to obtain the mapping on its 

behalf. But the subsequent three queries are iterative since all of the replies are directly returned 



 

to dns.poly.edu. In theory, any DNS query can be iterative or recursive. For example, Figure 

2.17 shows a DNS query chain for which all of the queries are recursive. In practice, the queries 

typically follow the pattern in Figure 2.16: The query from the requesting host to the local DNS 

server is recursive, and the remaining queries are iterative. 

 

                                          Figure 2.17: Recursive queries in DNS 

DNS Caching 

Our discussion thus far has ignored DNS caching, a critically important feature of the DNS 

system. In truth, DNS extensively exploits DNS caching in order to improve the delay 

performance and to reduce the number of DNS messages echoing around the Internet. The idea 

behind DNS caching is very simple. In a query chain, when a DNS server receives a DNS reply 

(containing, for example, a mapping from a hostname to an IP address), it can cache the mapping 

into its local memory. For example, in Figure 2.16, each time the local DNS server dns.poly.edu 

receives a reply from some DNS server, it can cache any of the information contained in the reply. 

If a hostname/IP address pair is cached in a DNS server and another query arrives to the DNS 

server for the same hostname, the DNS server can provide the desired IP address, even if it is not 

authoritative for the hostname. Because hosts and mappings between hostnames and IP addresses 



 

are by no means permanent, DNS servers discard cached information after a period of time (often 

set to two days). As an example, suppose that a host apricot.poly.edu queries dns.poly.edu for the 

IP address for the hostname cnn.com. Furthermore, suppose that a few hours later, another 

Polytechnic University host, say, kiwi.poly.fr, also queries dns.poly.edu with the same hostname. 

Because of caching, the local DNS server will be able to immediately return the IP address of 

cnn.com to this second requesting host without having to query any other DNS servers. A local 

DNS server can also cache the IP addresses of TLD servers, thereby allowing the local DNS server 

to bypass the root DNS servers in a query chain (this often happens). 

 

2.5.3 DNS Records and Messages 

The DNS servers that together implement the DNS distributed database store resource records 

(RRs), including RRs that provide hostname-to-IP address mappings. Each DNS reply message 

carries one or more resource records. It is defined in the DNS RFCs [RFC 1034; RFC 1035]. A 

resource record is a four-tuple that contains the following fields:   (Name, Value, Type, and 

TTL) 

 

TTL is the time to live of the resource record; it determines when a resource should be removed 

from a cache. In the example records given below, we ignore the TTL field. The meaning of 

Name       and Value   depend on Type: 

 

• If Type=A, then Name is a hostname and Value is the IP address for the hostname. Thus, a 

Type A record provides the standard hostname-to-IP address mapping. As an example, 

(relay1.bar.foo.com, 145.37.93.126, A) is a Type A record. 

• If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an 

authoritative DNS server that knows how to obtain the IP addresses for hosts in the 

domain. This record is used to route DNS queries further along in the query chain. As an 

example, (foo.com, dns.foo.com, NS)  is a Type NS record. 

• If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This 

record can provide querying hosts the canonical name for a hostname. As an example, 

(foo.com, relay1.bar.foo.com, CNAME)      is a CNAME record. 

• If Type=MX, then Value is the canonical name of a mail server that has an alias hostname 

Name. As an example, (foo.com, mail.bar.foo.com, MX) is an MX record. MX records 

allow the hostnames of mail servers to have simple aliases.  

 

If a DNS server is authoritative for a particular hostname, then the DNS server will contain a 

Type A record for the hostname. (Even if the DNS server is not authoritative, it may contain a Type 

A record in its cache.) If a server is not authoritative for a hostname, then the server will contain a 

Type NS record for the domain that includes the hostname; it will also contain a Type A record 

that provides the IP address of the DNS server in the Value field of the NS record. As an example, 

suppose an edu TLD server is not authoritative for the host gaia.cs.umass.edu. Then this server will 



 

contain a record for a domain that includes the host gaia.cs.umass.edu, for example, (umass.edu, 

dns.umass.edu, NS). The edu TLD server would also contain a Type A record, which maps the DNS 

server dns.umass.edu to an IP address, for example, (dns.umass.edu, 128.119.40.111, A). 

 

DNS Messages 

Earlier in this section, we referred to DNS query and reply messages. These are the only two 

kinds of DNS messages. Furthermore, both query and reply messages have the same format, as 

shown in Figure 2.18.The semantics of the various fields in a DNS message are as follows: 

 

• The first 12 bytes is the header section, which has a number of fields. The first field is a 16-bit 

number that identifies the query. This identifier is copied into the reply message to a query, 

allowing the client to match received replies with sent queries. There are a number of flags 

in the flag field. A 1-bit query/reply flag indicates whether the message is a query (0) or a 

reply (1). A 1-bit authoritative flag is set in a reply message when a DNS server is an 

authoritative server for a queried name. A 1-bit recursion-desired flag is set when a client 

(host or DNS server) desires that the DNS server perform recursion when it doesn’t have the 

record. A 1-bit recursion- available field is set in a reply if the DNS server supports 

recursion. In the header, there are also four number-of fields. These fields indicate the number 

of occurrences of the four types of data sections that follow the header. 

• The question section contains information about the query that is being made. This section 

includes (1) a name field that contains the name that is being queried, and (2) a type field 

that indicates the type of question being asked about the name—for example, a host 

address associated with a name (Type A) or the mail server for a name (Type MX). 

• In a reply from a DNS server, the answer section contains the resource records for the 

name that was originally queried. Recall that in each resource record there is the Type (for 

example, A, NS, CNAME, and MX), the Value, and the TTL. A reply can return multiple 

RRs in the answer, since a hostname can have multiple IP addresses (for example, for 

replicated Web servers, as discussed earlier in this section). 

• The authority section contains records of other authoritative servers. 

• The additional section contains other helpful records. For example, the answer field in a 

reply to an MX query contains a resource record providing the canonical hostname of a 

mail server. The additional section contains a Type A record providing the IP address for 

the canonical hostname of the mail server. 

 

How would you like to send a DNS query message directly from the host you’re working on 

to some DNS server? This can easily be done with the nslookup program, which is available 

from most Windows and UNIX platforms. For example, from a Windows host, open the 

Command Prompt and invoke the nslookup program by simply typing “nslookup.” After 

invoking nslookup, you can send a DNS query to any DNS server (root, TLD, or authoritative). 



 

After receiving the reply message from the DNS server, nslookup will display the records 

included in the reply (in a human-readable format). As an alternative to running nslookup from 

your own host, you can visit one of many Web sites that allow you to remotely employ nslookup. 

(Just type “nslookup” into a search engine and you’ll be brought to one of these sites.)  

 

 
 

                                         Figure 2.18: DNS message format 

 

Inserting Records into the DNS Database 

The discussion above focused on how records are retrieved from the DNS database. You might 

be wondering how records get into the database in the first place. Suppose you have just created an 

exciting new startup company called Network Utopia. The first thing you’ll surely want to do is 

register the domain name networkutopia.com at a registrar. A registrar is a commercial entity 

that verifies the uniqueness of the domain name, enters the domain name into the DNS database 

(as discussed below), and collects a small fee from you for its services. Prior to 1999, a single 

registrar, Network Solutions, had a monopoly on domain name registration for com, net, and org 

domains. But now there are many registrars competing for customers, and the Internet 

Corporation for Assigned Names and Numbers (ICANN) accredits the various registrars. A 

complete list of accredited registrars is available at http://www.internic.net. 

 

When you register the domain name networkutopia.com with some registrar, you also need to 

provide the registrar with the names and IP addresses of your primary and secondary authoritative 

DNS servers. Suppose the names and IP addresses are dns1.networkutopia.com, 

dns2.networkutopia.com, 212.212.212.1, and 212.212.212.2. For each of these two authoritative 

DNS servers, the registrar would then make sure that a Type NS and a Type A record are entered 

into the TLD com servers.  

http://www.internic.net/


 

QUESTION BANK  - Chapter 2 Review Questions 

 

SECTION 2.1 

R1. List five non-proprietary Internet applications and the application-layer protocols that 

they use. 

R2. What is the difference between network architecture and application architecture? 

R3. For a communication session between a pair of processes, which process is the client and 

which is the server? 

R4. For a P2P file-sharing application, do you agree with the statement, “There is no notion of 

client and server sides of a communication session”? Why or why not? 

R5. What information is used by a process running on one host to  identify a process running 

on another host? 

R6. Suppose you wanted to do a transaction from a remote client to a server as fast as 

possible. Would you use UDP or TCP? Why? 

R7. Referring to Figure 2.4, we see that none of the applications listed in Figure 2.4 requires 

both no data loss and timing. Can you conceive of an application that requires no data loss and 

that is also highly time-sensitive? 

R8. List the four broad classes of services that a transport protocol can provide. For each of 

the service classes, indicate if either UDP or TCP (or both) pro- videos such a service. 

R9. Recall that TCP can be enhanced with SSL to provide process-to-process security 

services, including encryption. Does SSL operate at the transport layer or the application 

layer? If the application developer wants TCP to be enhanced with SSL, what does the 

developer have to do? 

 

SECTIONS 2.2–2.5 

R10. What is meant by a handshaking protocol? 

R11. Why do HTTP, FTP, SMTP, and POP3 run on top of TCP rather than on UDP? 

R12. Consider an e-commerce site that wants to keep a purchase record for each of its 

customers. Describe how this can be done with cookies. 

R13. Describe how Web caching can reduce the delay in receiving a requested object. Will 

Web caching reduce the delay for all objects requested by a user or for only some of the 

objects? Why? 

R14. Telnet into a Web server and send a multiline request message. Include in the request 

message the If-modified-since: header line to force a response message with the 304 Not 

Modified status code. 

R15. Why is it said that FTP sends control information “out-of-band”? 

R16. Suppose Alice, with a Web-based e-mail account (such as Hotmail or Gmail), sends a 



 

message to Bob, who accesses his mail from his mail server using POP3. Discuss how the 

message gets from Alice’s host to Bob’s host. Be sure to list the series of application-layer 

protocols that are used to move the message between the two hosts. 

R17. Print out the header of an e-mail message you have recently received. How many 

Received: header lines are there? Analyze each of the header lines in the message. 

R18. From a user’s perspective, what is the difference between the download-and- delete 

mode and the download-and-keep mode in POP3? 

R19. Is it possible for an organization’s Web server and mail server to have exactly the same 

alias for a hostname (for example, foo.com)? What would be the type for the RR that contains 

the hostname of the mail server? 

R20. Look over your received emails, and examine the header of a message sent from a user 

with an .edu email address. Is it possible to determine from the header the IP address of the 

host from which the message was sent? Do the same for a message sent from a Gmail 

account. 

 

SECTION 2.6 

R21. In BitTorrent, suppose Alice provides chunks to Bob throughout a 30-second interval. 

Will Bob necessarily return the favour and provide chunks to Alice in this same interval? Why 

or why not? 

R22. Consider a new peer Alice that joins BitTorrent without possessing any chunks. Without 

any chunks, she cannot become a top-four uploaded for any of the other peers, since she has 

nothing to upload. How then will Alice get her first chunk? 

R23. What is an overlay network? Does it include routers? What are the edges in the overlay 

network? 

R24. Consider a DHT with a mesh overlay topology (that is, every peer tracks all peers in the 

system). What are the advantages and disadvantages of such a design? What are the 

advantages and disadvantages of a circular DHT (with no shortcuts)? 

R25. List at least four different applications that are naturally suitable for P2P architectures. 

(Hint: File distribution and instant messaging are two.) 
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